포스텍, 플라스틱 성형 공정 추천하는 인공신경망 시스템 개발

포스텍(총장 김무환)은 노준석 기계공학과·화학공학과 교수 연구팀이 인공신경망과 무작위 탐색을 결합해 사출성형 공정 조건을 추천해주는 시스템을 개발했다고 11일 밝혔다.

기계공학과·화학공학과 박사과정 이치헌 씨, 이승철 기계공학과 교수·통합과정 나주원씨, 박성진 교수팀이 함께 참여한 이번 시스템은 다양한 모양의 결과물을 실시간으로 얻을 수 있다는 점이 가장 큰 장점이다.

Photo Image
노준석 포스텍 교수

연구팀은 인공지능으로 공정 조건과 최종 제품과 관계를 학습하고, 원하는 품질을 만족하는 공정 조건을 찾기 위한 연구를 진행했다. 먼저 36개 서로 다른 금형으로부터 3600개의 시뮬레이션 데이터와 476개 실험데이터를 얻어 학습했다. 그 결과 각각의 데이터는 15개 모양과 5개 공정을 입력값으로 하고, 최종 제품의 무게를 출력값으로 가지는 것을 확인했다.

또 전이학습을 도입해 학습된 무게 예측 모델을 바탕으로, 무작위 탐색함으로써 최적 공정 조건을 찾아주는 추천 시스템을 개발했다. 마지막으로 실제 사출기에 활용하기 위해 그래픽유저인터페이스(GUI)를 개발했다. 이를 통해 사출성형 비전문가도 해당 시스템을 바탕으로 임의의 제품에 대해서 모양 정보를 입력해줌으로써 원하는 결과물 무게의 1% 이내 오차를 가지는 공정 조건을 설정할 수 있다.

Photo Image
인공신경망 시스템

이번 연구는 36개 다른 형상을 가진 제품들에 대해 정량화된 모양와 공정 조건을 모두 변경해가며 결과물(제품 무게)에 대한 정보를 수집했다. 임의의 새로운 제품을 성형해도 해당 제품의 모양만 입력하면 결과를 예측, 학습데이터를 생성하지 않고도 공정 조건을 제어할 수 있다.

이번에 개발된 인공신경망 시스템을 활용하면 사출전문가가 아니더라도 제품의 모양과 원하는 최종 제품의 무게를 입력하는 것만으로 균일한 결과물을 얻을 수 있다. 어려웠던 플라스틱 사출 공정이나 절삭, 3D프린터, 주조 등 다양한 제조업에 '무인화 스마트 팩토리'를 활용할 수 있을 것으로 기대된다.

LS엠트론, 한국생산기술연구원, VM테크, 포스코와 공동 연구로 이뤄졌으며, 과학기술정보통신부-한국연구재단(중견연구, 글로벌프론티어사업, RLRC선도연구센터), 산업통상자원부-한국산업기술평가관리원(기계산업핵심기술개발사업)의 지원으로 수행됐다. 이번 연구 성과는 전문 저널인 '어드밴스드 인텔리전트 시스템즈'에 발표됐다.


포항=정재훈기자 jhoon@etnews.com


브랜드 뉴스룸