기초과학연구원(IBS, 원장 노도영) 분자 분광학 및 동력학 연구단(단장 조민행)의 심상희 교수(고려대 화학과 교수) 연구팀은 서울대, 울산과학기술원(UNIST) 등과 공동연구로 민물장어의 형광단백질로 살아있는 세포 내 구조를 8배 더 오래 관찰할 수 있는 초고해상도 형광현미경법을 개발했다.
생체 기본단위인 세포는 수 나노미터 크기의 다양한 분자들이 역동적으로 변화하는 복잡계다. 이를 관찰하려면 초고해상도 형광현미경이 필요하다. 하지만 형광 단백질이 반복적으로 빛에 노출되면 형광이 사라지는 광표백 현상으로 인해 장시간 초해상도 촬영이 어렵다는 한계가 있었다.
연구진은 민물장어에서 유래한 형광단백질인 우나지(Unag)가 내부 아미노산이 아닌 외부 대사물질인 빌리루빈을 발광체로 사용한다는 점에 착안, 장시간 살아있는 세포를 관찰할 수 있는 현미경법을 고안해냈다.
우나지 단백질과 빌리루빈은 각각 떨어져 있을 때 형광을 발광하지 못하는 물질이지만, 결합하면 밝은 녹색 형광을 내는 형광물질이 된다. 연구진은 우나지-빌리루빈 결합체에 청색광을 쪼이면 광표백에 의해 형광이 꺼지고, 이후 다시 빌리루빈을 처리하면 형광이 되살아난다는 것을 규명했다.
이후 우나지를 초고해상도 형광현미경에 적용했다. 세포 내 구조에 우나지를 표지하고 청색광을 쪼여 형광을 끈 뒤, 빌리루빈과의 재결합을 통해 일부 우나지만 형광이 켜지도록 조절했다. 이를 통해 세포 속 분자들의 위치를 나노미터 수준의 정확도로 측정하여, 점묘화 같은 초고해상도 이미지를 구성할 수 있었다.
우나지는 기존 형광 단백질에 비해 크기가 절반 수준으로 분자들의 위치를 고밀도로 표지할 수 있어 해상도를 높일 수 있다는 장점도 있다. 더 나아가 연구진은 레이저 세기와 용액 내 산소농도를 통해 형광이 꺼지고 회복하는 반응속도를 조절하는데도 성공했다.
심상희 교수는 “초고해상도 형광현미경으로 살아있는 세포의 동영상을 촬영하는 데 걸림돌이 되어왔던 광표백 한계를 극복한 기술”이라며 “이 기술이 향후 장시간 관찰이 필요한 생체 나노구조 파악 및 생명현상 연구의 발전에 크게 기여할 것으로 기대한다”고 말했다.
대전=김영준기자 kyj85@etnews.com