현대모비스가 연구개발(R&D) 분야에 이어 생산·물류 등 전사 각 사업부문에도 인공지능(AI) 기술을 확대 적용한다. 품질향상과 비용절감, 고객 만족도 제고 등 경영혁신을 이루기 위한 차원이다.
현대모비스(대표 박정국)는 AI로 품질 불량을 검출해내는 알고리즘을 개발해 생산현장에 적용한다고 5일 밝혔다. 이와 함께 외부 환경 변화를 학습해 AS부품의 수요를 예측하는 AI 모델 개발에도 성공해 상반기 적용할 계획이다.
현대모비스는 지난해 초 사내 빅데이터팀을 신설하고, 현업부서와의 협업을 통해 이와 같은 데이터 분석 기술을 모두 독자 개발했다. ICT 기업이 아닌 자동차 부품기업이 맞춤형 AI 기술을 개발하는 별도 팀을 운영하는 것은 현대모비스가 유일하다.
현대모비스는 이미지 데이터를 기반으로 품질 불량을 검출해내는 알고리즘을 자체 개발해 첨단 전장부품 공장인 진천공장 내 '전동식 조향장치용 전자제어장치(MDPS ECU)' 생산라인에 적용했다.
전자제어장치(ECU)는 전자식 부품의 두뇌 역할을 하는 부품으로 인쇄회로기판(PCB) 위에 수많은 작은 소자들을 삽입해 만든다. 품질 검사 방법의 한계로 정상적으로 기능하는 제품이 부적합 판정을 받는 경우가 생길 수 있다. 이런 제품들은 다시 숙련된 기술자가 육안으로 검사를 하고 기능 상 이상이 없는지 재확인하는 과정을 거쳐야 한다.
현대모비스는 이 과정에서 비효율이 발생한다고 판단해 AI 컴퓨터로 하여금 제품을 정확하게 판별해 낼 수 있도록 다양한 형태의 샘플들을 학습시켰다. 알고리즘은 현재도 98% 이상의 판별률을 보이고 있다. 데이터가 누적될수록 완벽하게 제품을 판별해 낼 수 있을 전망이다.
현대모비스는 자체적으로 확보한 알고리즘을 일부 수정하면 다른 PCB 라인에도 바로 적용할 수 있는 만큼 현재 1개 라인에 적용돼 있는 이 알고리즘을 올해까지 5개 라인으로 확대하기로 했다. 같은 전자장치를 생산하는 중국 천진 공장 등 글로벌 생산 거점에도 확대 적용할 방침이다.
현대모비스는 AS부품 수요에 영향을 끼치는 다양한 외부요인을 학습해 수요량을 예측하는 모델 개발에도 성공해 상반기부터 활용한다는 방침이다. 현대·기아차 단종 차량을 비롯해 244개 차종, 270만개에 달하는 대단위 AS부품을 공급하고 있다. 전국 4개 물류센터와 22개의 부품 사업소, 1200여개 대리점 등 네트워크를 구축해 부품을 공급하고 있지만, 품목의 수가 워낙 방대해 재고운영에 어려움이 있다.
현대모비스는 과거 데이터를 바탕으로 향후 1년간 소요될 AS부품 수를 예측해 미리 부품을 확보해 오고 있다. 이 통계모델을 지속적으로 개선해 현재 평균 90% 이상의 정확도를 보이고 있으나, 외부 영향에 민감한 일부 부품의 경우 수많은 변수들로 인해 정확도가 떨어지는 경향이 있었다. 현대모비스는 수요예측을 더 정확히 하기 위해 향후 예상되는 외부요인들을 AI 컴퓨터로 분석해 수요 예측 정확도를 대폭 개선했다.
현대모비스는 수요 예측 모델의 정확도가 올라간 만큼 물류비용이 절감되는 것은 물론 AS부품의 적기 공급을 통해 고객만족도도 극대화 될 것으로 기대하고 있다. 앞으로 생산과 물류를 비롯해 품질, IT 등 전 사업 영역에 걸쳐 맞춤형 AI 기술을 적용, 업무 효율성을 높여나간다는 계획이다.
이상화 현대모비스 IT기획실장은 “각 사업 부문별로 기술의 한계 때문에 발생했던 비효율적인 부분들은 AI 기술의 발전으로 대부분 해결할 수 있게 됐다”면서 “앞으로 각 현업부서별로 개선 사항들을 취합하고, 우선순위에 따라 AI 기술을 순차적으로 도입해 전사적인 차원의 경영 혁신을 이뤄나갈 것”이라고 말했다.
<표>현대모비스 인공지능 기술 활용 사례
류종은 자동차/항공 전문기자 rje312@etnews.com